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The values of the propagation constants, which correspond to maxima of the real part of the functional derived from a 
variational principle, by using of the exact analytical eigenfunctions, are used as initial guesses to increase the efficiency for 
complex root searching of the associated dispersion equation for a multilayer planar waveguide. This variational method is 
used to study the effects of addition of a low-index buffer layer over a high substrate on the propagation characteristics of 
the waveguide.  
 
(Received May 28, 2009 ; accepted June 15, 2009) 
 
Keywords: Waveguides; Quantum mechanics, Variational analysis, Optical planar waveguides 
 
 
 

1. Introduction  
 

The propagation constants for the optical modes can 
be obtained by solving the dispersion transcendental 
equations. For many of the leaky modes and for modes of 
lossy waveguide, the optical propagation constants are 
complex numbers. It is difficult to extract a large number 
of the complex solutions because of the oscillatory 
behavior of the dispersion equation. A disadvantage of the 
Newton-Raphson method is the need of an initial guess 
value very close to the actual root for each zeros of the 
dispersion equation. Although the Cauchy Integration 
method [1] exploits the analyticity of the dispersion 
equation and is capable of finding all the solutions in a 
given region of the complex plane, however a computer 
implementation is not easy as it involves numerical 
integration along closed contour in complex plane and 
searching for roots of a polynomial. The perturbation 
approach gives better results only when there is a small 
difference between the refractive indices in each layer of 
the layered waveguide. Recently [2], an efficient and exact 
variational scheme was used for extraction of guided and 
leaky modes in layered waveguides based on a 
modification of the dispersion equation. The effective 
indices are derived from the minima of a functional 
dependent on the reflection coefficients and are insensitive 
to the choice of base layer. 

In this paper we apply a variational method for exact 
location of each of the zeros of the dispersion equation 
which correspond to the leaky modes of waveguides, by 
using of the exact analytical eigenfunctions. 

The buffered leaky planar waveguides are obtained by 
placing a buffer material with a lower refractive index 
between the waveguiding structure and the high-index 
low-cost silicon substrate [3]. The scalar-wave equation 
for a buffered leaky planar waveguide is given by  
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where β is the propagation constant, k is the free space 
wave number, n(x) is the refractive index profile  
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n1, n2, n3, n4 and n5 are the refractive indices of the core, 
SiO2 buffer, Si substrate, SiO2 by PECVD cladding and 
air cladding, respectively (n3 > n1 > n4 > n2> n5), d1 - d3,          
d2 – d1, semi-infinite, d3 – d4, and semi-infinite are the 
thickness of these layers, respectively. The effective index 
β/k for the TE and TM  modes can be found from the 
dispersion equation which is obtained by applying the 
boundary conditions at the interfaces between different 
layers. 
 

2. The variational method - TE modes  
 
In what follows we illustrate the application of the 

variational method to a        five-layer slab waveguide that 
allow exact analytical solutions (the one-dimensional 
scalar-wave equation case). For TE modes, yE=ψ and 

x∂
∂ψ

 are continuous at each interface of the waveguide. 

The variational exact solution (Eq. (1) can be written as an 
eigenvalue equation) of the scalar wave Eq. (1) is found 
from the functional (see, for example [4]) 
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subject to the constraint that  
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where the exact function is given by  
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And 
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The minus sign for 3α  corresponds to the leaky 
modes in substrate. The integrals in equations (3-4) with 
the chosen exact functions are evaluated analytically to 
reduce the amount of numerical computation. The 
solutions of the equation 
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give the propagation constants β and the effective index 
β/k of the waveguide. Then the field distributions can be 
evaluated. The values of β which correspond to maxima of 
the real part of J11/I11 can be used as initial guesses for 
complex root searching. Also, we can use the Muller’s 
method [5] to solve the equation (11), since the three 
initial guesses are highly sensitive to search the solution 
for complex roots. An alternative method that is 
competitive or superior (due to its insensitivity to initial 
guesses and high speed of convergence) to Muller’s 
method is Davidenko’s method [6]. Davidenko’s method 
transforms a set of coupled nonlinear algebraic equations 
into a set of two coupled first-order ordinary differential 
equations in terms of the real and imaginary parts of the 
complex root and with a dummy variable t. The solution is 
reached when t is very large  (t → ∞).  
 Mehrany, Khorasani and Rashidian [2] used a 
different variational scheme where the functional of the 
form 
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dependent on the reflection coefficients 
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is based on a modification of the dispersion equation (see 
also [7,8]) 
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The effective indices are derived from the local minima of 
this functional and are insensitive to the choice of base 
layer. 
 Another dispersion relation of five-layer waveguide 
[7] 
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 is based on the transfer matrix method. Here, 
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 A different dispersion equation [9] 
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is based on an analytical Runge-Kutta method. It is 
possible to increase the efficiency for searching solutions 
of the propagation constants by simultaneously solving of 
the equations (11), (14), (15) and (20). 
 
 

3. The variational method - TM modes 
 
The above procedure can be extended to the TM 

modes where yH=ψ and 
xn ∂

∂ψ
2

1
 are continuous at 

each interface of the waveguide. The variational exact 
solution for TM modes is found from the functional 
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subject to the constraint that   
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where the exact function is given by  
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The integrals in equations (24-25) with the chosen 
exact functions are evaluated analytically to reduce the 
amount of numerical computation. 
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4. Numerical results and conclusions  
 
An illustration of the maximum of the real part of 

J11/I11 (4) in the variational method and zeros of the 
dispersion equation (14) for the TE0 mode of the buffered 
leaky planar waveguide (d1 = 0.07μm, d2 = 1.07μm, d3 = -
0.07μm, d4 = -1.07μm, n1 = 1.98,  n2 = 1.45, n3 = 3.476, n4 
= 1.464, n5 = 1, λ = 1.55μm) are shown in Fig.1. Fig. 2. 
shows the zeros of the dispersion equation (4) in our 
variational method and the variational  

 

 
 

Fig. 1. Illustration of the maxima of the real part of 
J11/I11 (4) in our variational method and zeros of the 
dispersion equation (14) for the TE0 mode of the buffered  
                              leaky waveguide. 

 

 
 

Fig. 2. Illustration of zeros of the dispersion equation (4) 
in our variational method and the variational functional 
J (12) based on reflection coefficients for the TE0 mode  
                    of the buffered leaky waveguide. 

 
 
functional J (12) based on reflection coefficients for the 
TE0 mode of the same buffered leaky waveguide. Fig. 3. 
shows the zeros of the dispersion equations (20) based on 
an analytical Runge-Kutta method [8] and (15) based on 

the transfer matrix method for the TE0 mode of the same 
buffered leaky waveguide.  Fig.4. shows the real (-) and 
imaginary (- -) solutions and their initial guesses in the 
Davidenko’s method. This algorithm has exponential 
convergence with respect to the dummy variable t and 
gives very good results for the initial guesses that are very 
far from the exact values. Only the dispersion equation (4) 
in our variational method gives the same result as the 
Davidenko’s method for initial β 0 = 100 + 0 j. The 
numerical results of the propagation constant β = 
6.1892610225 – 0.0031220002j and the effective index                    
β/k = 1.5268298030 – 0.0007701667j for TE0 mode are in 
agreement with the previously published values [3].  
 

 
 
Fig. 3. Illustration of zeros of the dispersion equations 
(20) based on an analytical Runge-Kutta method and 
(15) based  on  the  transfer  matrix  method  for  the TE0  
            mode of the buffered leaky waveguide.  

 

 
 

Fig.4. The real (-) and imaginary (- -) solutions and their 
initial guesses in the Davidenko’s method. 
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We can see a distinct oscillatory behavior for the 
dispersion equations in the region of their roots and thus a 
different optimum initial guess for each of their zeros. The 
values of β which correspond to maxima of the real part of 
J11/I11 are very good initial guesses for complex root 
searching of the associated dispersion equation (11). 

This variational method can be used for a better 
understanding of the effects of addition of a low-index 
buffer layer over a high substrate on the propagation 
characteristics of the waveguide. 
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